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Abstract
In the present paper we study the well-posedness for the one-dimensional
cubic NLS perturbed by a generic point interaction. Point interactions are
described as the 4-parameter family of self-adjoint extensions of the symmetric
1D Laplacian defined on the regular functions vanishing at a point, and in the
present context can be interpreted as localized defects interacting with the NLS
field. A previously treated special case is given by an NLS equation with a δ

defect which we generalize and extend, as far as well-posedness is concerned,
to the whole family of point interactions. We prove existence and uniqueness
of the local Cauchy problem in strong form (initial data and evolution in the
operator domain of point interactions), weak form (initial data and evolution in
the form domain of point interactions) and L2(R). Conservation laws of mass
and energy are proved for finite energy weak solutions of the problem, which
imply global existence of the dynamics. A technical difficulty arises due to the
fact that a power nonlinearity does not preserve the form domain for a subclass
of point interactions; to overcome it, a technique based on the extension of
resolvents of the linear part of the generator to maps between a suitable Hilbert
space and the energy space is devised and estimates are given which show the
needed regularization properties of the nonlinear flow.

PACS numbers: 05.45.−a, 03.65.−w, 05.45.Yv
Mathematics Subject Classification: 35Q55

1. Introduction

The present paper is devoted to the well-posedness of a nonlinear Schrödinger (NLS) equation
with a point defect in dimension 1. The Schrödinger equation bears a cubic nonlinearity, and
the defect is described by the general point interaction in dimension 1. To be precise, the
equation to be studied is given by{

i∂tψ(t) = Hψ(t) + λ|ψ(t)|2ψ(t)

ψ(0) = ψ0
(1.1)
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or in weak form [21]

ψ(t) = e−iHtψ0 − iλ
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s) (1.2)

where ψ0 represents the initial data and H is the Hamiltonian operator generating a point
interaction at the origin. Point interactions are singular perturbations of the Laplace operator;
restricting the Laplacian on the set of regular functions vanishing at a point gives a symmetric
but not self-adjoint operator; its self-adjoint extensions are by definition point interactions
[6, 7]. In one dimension (1D) they form a four-parameter family of s.a. operators [5], and they
describe, in an effective way, a variety of situations relevant to the dynamics and scattering of
quantum particles acted on by strongly concentrated potentials. In dimension 1, their domains
are characterized by suitable boundary conditions, which apart from the standard ones (i.e.
Dirichlet, Neumann, Robin, one sided or two sided) comprise analogous boundary conditions
involving the jump of the functions ([ψ]) or their derivatives at the point where the interaction
takes place. Among the main non-trivial examples are the well-known δ interaction (where
the boundary condition is [ψ ′](0) = αψ(0)) often called Fermi pseudopotential in the physics
literature, or the δ′ interaction (roughly speaking [ψ](0) = αψ ′(0), see [16] for details). In the
case of NLS with δ interaction there exists a certain amount of literature, physical, numerical
and mathematical, concerning the existence of stationary states [9–11, 29], the asymptotic
behavior in time [22, 23], and the reduced dynamics on the stable soliton manifold [15, 20].
Little is known for the δ′ interaction, and nothing in the generic case.

Quite generally, equation (1.1) is a prototype of the interactions of nonlinear waves
propagating in media in which inhomogeneities are present. One possible physical
interpretation of the model described by equation (1.1) is given by the interaction of a 1D
Bose condensate with an impurity. To the right and left point of the perturbation the Bose
condensate satisfies, as an effective equation in the limit of infinite bosons (see for the 1D case
[1], for the 3D setting [17, 18, 25]), and the NLS equation (usually called the Gross–Pitaevskii
equation) in this context. At the defect or impurity location a boundary condition establishes
the nature of interaction, and gives the link between the two sides of the condensate. Bose
condensates are quantum many-body systems which display a typical macroscopic behavior,
and is measured in an effective way through the scattering length of the underlying two-body
interaction. So the use of a point interaction in (1.1) is legitimate if the scale length at which
the interaction takes place is far smaller than the characteristic scattering length of the Bose
condensate. A second interpretation is of classical origin. It is well known that the propagation
of an optical wave pulse in a nonlinear dispersive medium (such as an optical fiber) gives rise
to a NLS equation for the evolution of the pulse envelope [8]. The presence of defects or
junctions in the fiber can be modeled through boundary conditions, and in the simple and
generally adopted case of 1D propagation along the fiber this corresponds to consider a point
perturbation.

A different occurrence of an effective point (δ) interaction is in the study of bimodal
optical fibers; these devices are described by two coupled NLS which admit two-soliton
solutions; in a typical situation the solitons are one narrow and one wider. At a formal level
it turns out that in a suitable limit the pulse propagation is described by a single NLS and
the effect of the narrower soliton can be represented by a δ interaction, at least as far as its
influence on the dynamics of the wider one is concerned (see [11] and references therein). The
previous applications acquire an additional interest due to the evidence, both on the numerical
and rigorous side, of a certain persistence of the soliton behavior even in the presence of a
breaking of translational invariance due to a δ interaction [22, 23]; in particular a fast soliton
breaks into two pieces, one reflected and one transmitted, the relative amplitude of which
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being controlled by the scattering matrix of the δ interaction at least within times long with
respect to the interaction time. This is a meaningful phenomenon quite different from orbital
stability and indicates a peculiar robustness of the soliton solutions of NLS, even in the case
of strong interaction with external perturbation.

Among the possible future perspectives, let us cite the analysis of the dynamics of the
system investigated in [13], where the ground states of the stationary Maxwell–Schrödinger
system in a bounded domain with a point defect are studied. In such a case the nonlinearity
arises from a Hartree-type interaction, and is milder than in the usual NLS; nevertheless, the
results and the techniques are interesting because they apply in dimension 3. To this aim, one
could exploit the dispersive estimates for a linear 3D system with point interactions, given in
[14].

As a final quotation, we mention the paper [26], which deals with well-posedness, direct
and inverse scattering for a family of NLS with potential terms.

We are not concerned here with a rigorous justification (which is lacking) of the point
interaction as an effective model of scatterer or junction in the NLS propagation phenomenon.
We assume it as a plausible one and we proceed to show its existence and uniqueness in the
small and in the large and qualitative properties, such as energy conservation for the whole
family of point interactions. At a rigorous level, well-posedness of the problem (1.2) is well
known for the case of δ interaction only (see [20, 23]). Here we stress that, the generic point
interaction, which is considered as a potential, is not in H−1. Actually, the energy domain of
the problem is larger than H1.

In the following, we give a brief summary of the results obtained in the paper and the
techniques involved in the proofs.

In section 2, the definition and main properties of general point interactions are given. In
particular, the form domain and quadratic form of the family are described completely (as far
as we know this material is not published elsewhere).

In section 3, we state and prove local existence, uniqueness and blow-up alternative for
strong solution to (1.1) (theorem 3.1). By strong solutions we mean solutions t → ψ(t)

with values in the domain of H. Then we prove energy conservation for the strong flow as
a consequence of which blow-up does not occur and maximal solutions are in fact global in
time. The proof of theorem 3.1 is through a contraction in a suitable neighborhood of the
initial point in the space X = C([0, T ],D(H)) ∩ C1([0, T ], L2(R2)). The main technical
tools are: i) a bound on the L∞ norm on ψ and its graph norm ‖Hψ‖L2(R) + ‖ψ‖L2(R); ii)
an integration by parts in the integral form of problem (1.1) to get a regularization of most
singular terms.

In section 4 we treat local and global well posedness in the finite energy space, i.e. form
domains, for the family of point interactions whose form domain is given by H 1(R+)⊕H 1(R−).
Quite general results of local existence in which the linear part of the generator is self-adjoint
are known in the literature (see theorem 3.9.9 in [12] and section 3.7). In such a case
one obtains a local existence of a solution ψ ∈ C([0, T ], X) ∩ C1([0, T ], X�), where X is
the form domain of the linear part of the generator, if uniqueness is known and a set of
hypotheses are satisfied. Here we prefer to proceed in a direct way, because the verification
of the hypotheses of the quoted general results for a part of the family of point interactions
is not simpler than a direct proof. In section 5, we explicitly treat the delicate case in
which a boundary condition is present in the definition of the energy space: this is indeed
the case for a subclass of the family of point interactions, whose form domain is given by
Qωa = {ψ ∈ H 1(R+) ⊕ H 1(R−) | ψ(0+) = ωaψ(0−), |ω| = 1, a ∈ R\{0,±1}}. In the
first place the nonlinearity does not preserve the boundary condition. As a consequence, for
these interactions there appear terms in the Duhamel formula that are difficult to immediately
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recognize as elements of the energy space. To get the relevant estimates, we prove that the
resolvent of the linear part can be continuously extended to a suitable Banach space, larger
than the dual of the energy spaces, with values still in the energy space. In the end, one obtains
for NLS with arbitrary point interactions local and global well-posedness on the form domain
of point interaction itself, stated and proved in theorem 5.10. The relevant properties of the
duals of the energy spaces needed in the proofs, are given at the beginning of this section.

The last result (section 6) is the global well-posedness in L2(R). The proof is based on the
dispersive behavior of the propagator associated with H and Strichartz-type estimates on the
same propagator. We obtain that the usual Duhamel map is a contraction in a neighborhood
of the initial data in a space of the form L∞

t L2
x ∩ L

q
t L

r
x for some couples (q, r). Incidentally,

the estimates are insensitive to the presence of stationary states.
In section 7 we give a brief summary on possible extensions of the result, and try to

outline how to obtain them.
Our results extend to dynamics on graphs, which is the subject of a paper in preparation.

2. Preliminaries

2.1. Notation

Here we fix some basic notation that we will use throughout the paper.

(1) The symbol (ψ, φ) denotes the scalar product in L2(R) between the functions ψ and φ,
according to the definition

(ψ, φ) :=
∫

R

ψ(x)φ(x) dx.

(2) The symbol 〈f,ψ〉X�,X denotes the duality product between the functional f ∈ X� and
the vector ψ ∈ X.

(3) We denote by ψ̂ or Fψ the Fourier transform of the function ψ ∈ L2(R); the convention
on the normalization is the one given (when meaningful) by

ψ̂(k) = (2π)−1/2
∫

R

ψ(x) e−ikx dx.

The symbol F will be used also to denote the Fourier transform in the distribution space.
(4) The symbols χ± denote the characteristic function of the sets R

±.
(5) Some particular functions will play an important role and we will need to use them

frequently. Therefore, we define a notation for them:

ϕ±(x) = χ±(x) e∓x

ϕν(x) = νϕ+(x) + ϕ−(x).
(2.1)

Note that, as a particular case, ϕ1 = e−|·|. We will use also

ϕz
±(x) = χ±(x) e∓√

zx

ϕz(x) = ϕz
+(x) + ϕz

−(x) = e−√
z|x| (2.2)

where z ∈ C, Re
√

z > 0.

(6) We often deal with functions of the type ψ = χ+ψ+ + χ−ψ−, with ψ± ∈ H 1(R). With a
slight abuse of notation, we denote

ψ ′ = χ+ψ
′
+ + χ−ψ ′

−.

(7) The norm of ψ in the space Lp(R) is denoted by ‖ψ‖p, except for p = 2, in which case
we omit the subscript. For any other space we explicitly refer to the space in the subscript.
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2.2. Point interactions in dimension 1: operators and forms

By definition, the family of hamiltonian operators describing the dynamics of a particle in
dimension 1 under the influence of a scattering center located at the origin is obtained as the
set of self-adjoint extensions (s.a.e.) of the operator

Ĥ0 = −∂2
x (2.3)

defined on the domain

D(Ĥ0) = C∞
0 (R\{0}). (2.4)

Following [5] and [19], any s.a.e. of Ĥ0 can be described in one of the two following ways.

• Given ω, a, b, c, d such that |ω| = 1, ad − bc = 1, we define the s.a.e. HU as follows:

U = ω

(
a b

c d

)
,

DU := D(HU) =
{
ψ ∈ H 2(R\{0}),

(
ψ(0+)

ψ ′(0+)

)
= U

(
ψ(0−)

ψ ′(0−)

)}
, (2.5)

(HUψ)(x) = −ψ ′′(x), x = 0, ∀ψ ∈ D(HU).

• Given p, q ∈ R ∪ {∞} we define the s.a.e Hp,q as follows:

Dp,q := D(Hp,q) = {ψ ∈ H 2(R\{0}), ψ(0+) = pψ ′(0+), ψ(0−) = qψ ′(0−)},
(Hp,qψ)(x) = −ψ ′′(x), x = 0 ∀ψ ∈ D(Hp,q).

(2.6)

Given the quantity m := 1 − inf σ(H) < ∞, we introduce the norm ‖ψ‖H :=
‖(H + m)ψ‖ that endowes D(H) with the structure of a Hilbert space.

In the following we investigate the problem of finding solutions to (1.1) in the form
domain of the linear part of the generator. In order to do that we preliminarily recall such form
domains (see e.g. [24]).

Proposition 2.1. The quadratic forms associated with the self-adjoint extensions of Ĥ0 are
defined as follows.

(1) For the Hamiltonian H0,0 the energy space is

Q0 := {ψ ∈ H 1(R), ψ(0) = 0} (2.7)

and the form reads

B0(ψ) = ‖ψ ′‖2. (2.8)

(2) For the Hamiltonian H0,q , q = 0,

Q0+ := {ψ ∈ H 1(R+) ⊕ H 1(R−), ψ(0+) = 0} (2.9)

and

B0,q(ψ) = ‖ψ ′‖2
L2(R+)

+ ‖ψ ′‖2
L2(R−)

− |q|−1|ψ(0−)|2. (2.10)

Analogously,

Q0− := {ψ ∈ H 1(R+) ⊕ H 1(R−), ψ(0−) = 0} (2.11)

and the form reads

Bp,0(ψ) = ‖ψ ′‖2
L2(R+)

+ ‖ψ ′‖2
L2(R−)

+ |p|−1|ψ(0+)|2. (2.12)
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(3) For the Hamiltonian HU, defined in (2.5), with b = 0 the energy space is

Qωa := {ψ ∈ H 1(R+) ⊕ H 1(R−), ψ(0+) = ωaψ(0−)} (2.13)

and the form reads

Bωa(ψ) = ‖ψ ′‖2
L2(R+)

+ ‖ψ ′‖2
L2(R−)

+ ac|ψ(0−)|2. (2.14)

(4) For any other s.a.e. of Ĥ0 the energy space is given by

Q := H 1(R+) ⊕ H 1(R−). (2.15)

To describe the action of the form we have to consider two cases:
(4a) if the Hamiltonian is of the type HU described in (2.5), with b = 0, then

BU(ψ) := ‖ψ ′‖2
L2(R+)

+ ‖ψ ′‖2
L2(R−)

+ b−1[d|ψ(0+)|2

+ a|ψ(0−)|2 − 2 Re(ωψ(0+)ψ(0−))] (2.16)

(4b) if the Hamiltonian is of the type Hp,q described in (2.6), with p, q both different from
zero, then

Bp,q(ψ) := ‖ψ ′‖2
L2(R+)

+ ‖ψ ′‖2
L2(R−)

+ p−1|ψ(0+)|2 − q−1|ψ(0−)|2. (2.17)

All energy spaces can be endowed with the structure of Hilbert space by introducing the
scalar product

(ψ, φ)X = (ψ, φ) + lim
ε→0+

∫ +∞

ε

ψ ′(x)φ′(x) dx + lim
ε→0+

∫ −ε

−∞
ψ ′(x)φ′(x) dx. (2.18)

3. Global well-posedness in D(H)

Theorem 3.1. Let H be any self-adjoint extension of the operator Ĥ0 defined in (2.3), (2.4).
Let its domain be denoted by D(H).

For any ψ0 ∈ D(H) equation (1.2) has a unique solution ψ ∈ C(R,D(H)) ∩
C1(R, L2(R)).

Furthermore, the following conservation laws hold at any time t in the interval [0, T ):

‖ψ(t)‖ = ‖ψ0‖ (3.1)

E[ψ(t)] = E[ψ0] (3.2)

where the energy functional is defined as

E[ψ] = 1

2
B(ψ) +

λ

4
‖ψ‖4

4 (3.3)

and B is the quadratic form associated with the operator H.

Proof. First we prove local existence and blow-up alternative. Let us use the notation

X = C0([0, T ],D(H)) ∩ C1([0, T ], L2(R2)) (3.4)

and provide the space X with the norm

‖ψ‖X := max
t∈[0,T ]

‖ψ(t)‖H + max
t∈[0,T ]

‖∂tψ(t)‖. (3.5)

6
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Given ψ0 ∈ D(H), we define the function G : X → X , as

Gψ := e−iH ·ψ0 − iλ
∫ ·

0
ds e−i(·−s)H |ψ(s)|2ψ(s). (3.6)

First, it is immediately seen that

‖e−iHtψ0‖H = ‖ψ0‖H , ‖∂t e−iHtψ0‖ = ‖Hψ0‖. (3.7)

Therefore,

‖e−iHtψ0‖X = ‖ψ0‖H + ‖Hψ0‖ � 2‖ψ0‖H . (3.8)

Next, integrating by parts we obtain the identity∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s) = −i(H + m)−1|ψ(t)|2ψ(t)

+ ie−iHt (H + m)−1|ψ0|2ψ0 + m(H + m)−1
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

+ 2i(H + m)−1
∫ t

0
ds e−iH(t−s)|ψ(s)|2∂sψ(s)

+ i(H + m)−1
∫ t

0
ds e−iH(t−s)ψ2(s)∂sψ̄(s). (3.9)

Owing to the integration by parts, standard estimates on the various terms yield

‖Gψ‖X � 2‖ψ0‖H + CT ‖ψ‖3
X , ‖Gψ − Gξ‖X � CT

(‖ψ‖2
X + ‖ξ‖2

X
)‖ψ − ξ‖X .

(3.10)

Let us fix M := 4‖ψ0‖H and consider the ball of radius M in the space X , namely

Y := {ψ ∈ X , ‖ψ‖X � M}. (3.11)

From (3.10) one has

‖Gψ‖X � M

2
+ CT M3, ‖Gψ − Gξ‖X � CM2T ‖ψ − ξ‖X . (3.12)

If one chooses T = (2CM2)−1, then G is a contraction in Y . By contraction lemma we
immediately obtain the well-posedness of the problem (1.2) in D(H). By standard techniques
we know that there is a maximal time T �(ψ0) of existence for the solution. Since the size of
the time interval chosen to construct the contraction depends on the H-norm of the solution
only, and vanishes as such a norm diverges, either the solution is global or its H-norm diverges
in finite time.

The conservation law for the L2-norm is trivial. For the conservation of energy, note that

∂t (ψ(t),Hψ(t)) = −2λ Im (|ψ(t)|2ψ(t),Hψ(t)). (3.13)

On the other hand,

∂t (ψ(t), |ψ(t)|2ψ(t)) = ∂t (ψ
2(t), ψ2(t)) = 4 Im (|ψ(t)|2ψ(t),Hψ(t)). (3.14)

So conservation laws are proven.
Now we use the conservation laws to prove that strong solutions are global in time. We

treat the case of H = HU with b = 0 (see definition (2.5)) only, being the other cases simpler.
Suppose that
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T �(ψ0) is finite. Integrating by parts,∥∥∥∥
∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s)

∥∥∥∥
H

� ‖ψ(t)‖2
∞‖ψ(t)‖ + ‖ψ0‖2

∞‖ψ0‖

+ m

∫ t

0
ds‖ψ(s)‖2

∞‖ψ(s)‖ + 3
∫ t

0
ds‖ψ(s)‖2

∞‖Hψ(s)‖

+ 3|λ|
∫ t

0
ds‖ψ(s)‖2

∞‖|ψ(s)|2ψ(s)‖. (3.15)

Using conservation of energy, conservation of L2-norm, and inequality (4.6) first with p = ∞
and then with p = 4 one finds that, for any t < T �(ψ0),

‖ψ(t)‖H � ‖ψ0‖H + |λ|C
[
(2 + t (m + 3|λ|C2))‖ψ0‖ + 3

∫ t

0
ds‖ψ(s)‖H

]
, (3.16)

where C is a constant depending on ψ0 only. By a Gronwall-type estimate

‖ψ(t)‖H � C(ψ0) e3|λ|K2(ψ0)T
�(ψ0) < +∞ (3.17)

so, by the blow-up alternative, T �(ψ0) = ∞. The proof is complete. �

4. Global well-posedness in Q

In this section we prove the global well-posedness for the problem (1.2), provided that
the operator H is a s.a.e. of Ĥ0 (see (2.3), (2.4)) with energy domain equal to Q (see
proposition 2.1). All results apply to the cases of Q0,Q0,+,Q0− and Q±ω.

First, we prove some estimates. Any element of Q can be decomposed as

ψ(x) = χ+(x)ψ+(x) + χ−(x)ψ−(x), (4.1)

so the following estimates hold:

‖ψ‖2 = 1
2‖ψ+‖2 + 1

2‖ψ−‖2, ‖ψ ′‖2 = 1
2‖ψ ′

+‖2 + 1
2‖ψ ′

−‖2, ‖ψ ′
±‖�

√
2‖ψ ′‖, (4.2)

|ψ(0+) − ψ(0−)| � 1√
2
‖ψ+ − ψ−‖H 1 � 1√

2
(‖ψ+‖H 1 + ‖ψ−‖H 1). (4.3)

Besides, the norm introduced in (2.18) for elements of the energy space can be expressed as

‖ψ‖2
Q := 1

2‖ψ+‖2
H 1 + 1

2‖ψ−‖2
H 1 = ‖ψ‖2 + ‖ψ ′‖2. (4.4)

So, from the previous remarks

‖ψ‖∞ � C‖ψ‖Q, ‖ψ ′‖ � C‖ψ‖Q, |ψ(0+) − ψ(0−)| � C‖ψ‖Q < ‖ψ‖∞ � C‖ψ‖Q.

(4.5)

Finally, one-dimensional Gagliardo–Nirenberg’s estimate can be extended to the space Q as
follows:

‖ψ‖p � Cp‖ψ ′‖ 1
2 − 1

p ‖ψ‖ 1
2 + 1

p , (4.6)

for any p ∈ (2, +∞].
The proof of the following lemma is easily obtained using (4.1).

Lemma 4.1. For any function ψ ∈ Q,

‖|ψ |2ψ‖Q � C‖ψ‖3
Q. (4.7)

Furthermore, for any couple of functions ψ1, ψ2 ∈ Q

‖|ψ1|2ψ1 − |ψ2|2ψ2‖Q � C
(‖ψ1‖2

Q + ‖ψ2‖2
Q

)‖ψ1 − ψ2‖Q. (4.8)
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Lemma 4.2. Let H be a s.a.e. of Ĥ0 (see (2.3), (2.4)), and X be the related energy space (see
proposition 2.1). Then, for any ψ0 ∈ X, t ∈ R,

‖e−itH ψ0‖X � C̃‖ψ0‖X (4.9)

where the constant C̃ depends on ψ0 and H, but not on t.

Proof. We treat the case at point 4 in proposition 2.1 only, the others being easier. Since
b = 0, the domain of the form B associated with the operator H coincides with Q. Besides, the
value of the form is conserved by the linear flow, namely B(ψt) = B(ψ0), where we used the
notation ψt = e−itH ψ0. Then, from the unitary character of the propagator e−itH in L2(R),

|B(ψ0)| � ‖ψ ′
t‖2 − C∞|b|−1(|a| + |d| + 1)‖ψ ′

t‖‖ψ0‖ (4.10)

where the constant C∞ was defined in (4.6).
From (4.10) one immediately has

‖ψ ′
t‖2 � C|B(ψ0)| (4.11)

where C depends on |a|, |b|, |d|, and ‖ψ0‖ only. Conversely,

|B(ψ0)| � ‖ψ ′
0‖2 + |b|−1(|a| + |d| + 1)‖ψ ′

0‖‖ψ0‖ � C‖ψ0‖2
Q. (4.12)

Then, from (4.12) and (4.10), one immediately has

‖ψ ′
t‖ � C‖ψ0‖Q,

and since ‖ψt‖ = ‖ψ0‖, the proof is complete. �

Now we can prove the well-posedness for the local Cauchy problem in the form domain
of the s.a.e. H, provided that it coincides with the space Q.

Theorem 4.3. Let H be a s.a.e. of Ĥ0 (see (2.3), (2.4)) whose corresponding quadratic form
has domain Q. Then, for any ψ0 ∈ Q, equation (1.2) has a unique solution ψ ∈ C(R,Q).
Moreover, L2-norm and energy (3.3) are conserved.

Proof. Given ψ0 ∈ Q we consider the Banach space

Y := {ψ ∈ Q, ‖ψ‖Q � 2C̃‖ψ0‖Q}
where C̃ is the constant appearing in (4.9). We define the operator � acting on L∞([0, T ],Y),
with T to be specified:

(�ψ)(t) := e−itH ψ0 − iλ
∫ t

0
ds e−i(t−s)H |ψ(s)|2ψ(s). (4.13)

By lemmas 4.1 and 4.2

‖(�ψ)(t)‖Q � C̃‖ψ0‖Q + CT ‖ψ‖3
L∞([0,T ],X) (4.14)

and for any ψ1, ψ2 ∈ L∞([0, T ],Q)

‖(�ψ1)(t) − (�ψ2)(t)‖Q � CT
(‖ψ1‖2

L∞([0,T ],Q) + ‖ψ2‖2
L∞([0,T ],Q)

)‖ψ1 − ψ2‖L∞([0,T ],Q).

(4.15)

From (4.14) and (4.15) it follows that for T = (
9CC̃2‖ψ0‖2

Q

)−1
, � is a contraction of

L∞([0, T ],Y); then there exists a unique solution of equation (1.2) in L∞([0, T ],Y).
By a one-step bootstrap in (1.2) it is immediately seen that the solution actually belongs

to C0([0, T ],Y).
The time interval of local existence depends on the Q-norm of the solution only and

vanishes as such a norm explodes, so one obtains the following alternative: either the solution
is global in time, or its Q-norm diverges in finite time.
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Conservation of the L2-norm immediately follows from the obvious estimate

∂t eiHtψ(t) = −iλ eiHt |ψ(t)|2ψ(t). (4.16)

Furthermore, conservation of the energy is proven approximating ψ0 by a sequence ψ0,n ∈
D(H), and comparing the associated global solutions with the aid of Gronwall’s lemma. By
the blow-up alternative, global existence follows and the theorem is proven. �

Remark 4.4. All proofs in this section can be extended to any s.a.e. H of Ĥ0 whose energy
domain is Q0,Q0+,Q0− or Q±ω: the only condition is the stability of the energy domain
under the action of the cubic nonlinearity.

5. Global well-posedness in Qωa

In this section we prove the well-posedness for the problem (1.2) in the form domain Qωa of
a hamiltonian operator H defined by boundary conditions (2.5) with b = 0.

As already pointed out, this case is the most delicate. To treat it, we must prove a
generalized version of the ‘integrated by parts’ form of the Duhamel formula. To that purpose
we need to extend the action of the resolvent of H from L2(R) to the whole space Q�.

5.1. Dual of energy spaces

By standard argument of functional analysis (see e.g. [28], section 4.5), one proves

Proposition 5.1. The spaces Q�
0, Q�

ωa and Q� can be represented as follows:

Q�
0 =

{
f ∈ H−1(R), s.t.

∫
R

f̂ (k)

k2 + 1
dk = 0

}
(5.1)

Q�
ωa = Q�

0 ⊕ Span(δωa(0+)) (5.2)

Q� = Q�
0 ⊕ Span(δ(0+), δ(0−)). (5.3)

We used the notation δ(0±) to denote the functionals acting as follows:

〈δ(0±), ψ〉X�,X = lim
x→0±

ψ(x).

Besides, we denoted by δωa(0+) the functional that vanishes on Q0 ⊕ Span(ϕ−ωa−1) and gives
ωa when acting on ϕωa .

Corollary 5.2 (Decomposition of dual spaces). For any f ∈ Q� there exist f0 ∈ Q�
0, fωa ∈

Q�
ωa , α, β ∈ C, such that

f = f0 + αδ(0+) + βδ(0−) (5.4)

f = fωa +
β − ωa−1α

1 + a2
[a2δ(0−) − ωaδ(0+)]. (5.5)

Proof. Let f be an element of Q�. For any ψ ∈ Q define

f0(ψ) := f (ψ0) (5.6)

where ψ0 is the H 1
0 -component of ψ . Moreover, define

α := f (ϕ+), β := f (ϕ−) (5.7)

10
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and decomposition (5.4) is proven. Furthermore, we define the functional fωa as follows:

fωa := f0(ψ) +
ωaα + β

1 + a2
[ωaδ(0+) + δ(0−)]. (5.8)

To see that fωa is indeed in Q�
ωa it is sufficient to show that it is orthogonal to Q−ωa−1 . But,

since dimQ\Qωa = 1, the space orthogonal to Q−ωa−1 must be one dimensional, so it must be
spanned by the function ϕ−ωa−1 , and (5.5) is proven. �

Definition 5.3. For any energy domain X we define the norm in X� by

‖f ‖X� := sup
ψ∈X\{0}

|〈f,ψ〉X�,X|
‖ψ‖X

. (5.9)

Remark 5.4. It appears that, for any f ∈ X�, ω ∈ C with |ω| = 1, and a ∈ R,

‖f0‖Q�
0
� ‖fωa‖Q�

ωa
� ‖f ‖Q�. (5.10)

Vice versa, given f ∈ Q�
0 it is possible to define its trivial extension f̃ to Qωa as the functional

acting like f on Q0 and vanishing on ϕωa . Obviously, it can be further extended to f̃ that
vanishes on ϕ−ωa−1 . One has

‖f ‖Q�
0
= ‖f̃ ‖Q�

ωa
= ‖f̃ ‖Q�. (5.11)

5.2. Extension of the resolvent to Q�

We start by extending the resolvent of the free Laplacian to Q�.

Definition 5.5. Let H0 be the s.a.e. of Ĥ0 (see (2.3), (2.4)), defined on H 2(R). For any
z ∈ C\(−∞, 0] denote by R0(z) the resolvent operator (H0 + z)−1, acting on L2(R).

We define the extended free resolvent R̃0(z) as follows. Given f ∈ Q�,

R̃0(z)f := F−1 f̂1(k)

k2 + z
(5.12)

where, according to (5.4), (5.5), f 1 is the H−1-component of f , f̂1 is its Fourier transform as
a Schwartz distribution and F−1 denotes the inverse Fourier transform in the same space.

We point out the following:

• for any f ∈ Q�, R̃0(z)f ∈ H 1(R);
• R̃0(z) is not invertible, indeed its kernel coincides with the subspace of Q� generated by

δ(0+) − δ(0−). However, its restriction on H−1(R) is invertible;
• R̃0(z) is bounded as an operator from Q� to H 1(R). Indeed,

‖R̃0(z)f ‖2
H 1(R) � C

∫
R

|f̂1(k)|2
k2 + 1

dk � C‖f ‖2
Q� (5.13)

As a second step we extend to Q� the resolvent of the s.a.e. of Ĥ0 with Dirichlet boundary
condition at zero.

Definition 5.6. Let H0,0 be the s.a.e. of Ĥ0 (see (2.1), (2.2)) whose domain DD contains
all functions in H 2(R) vanishing at x = 0. For any z ∈ C\(−∞, 0] denote by RD(z) the
resolvent operator (H0,0 + z)−1 acting on L2(R).

We define the action of the extended resolvent R̃D(z) on f ∈ Q� as

R̃D(z)f := R̃0(z)f − ϕz

2
√

z
〈f, ϕz〉Q�,Q (5.14)

where the functions ϕz were introduced in section 2.1.
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Note that

• R̃D(z)f = RD(z)f if f ∈ L2(R).
• R̃D(z) is a continuous linear map from Q� to H 1

0 (R).
Indeed, from continuity of R̃0(z) and continuity of the second term in the definition
(5.14) of R̃0(z), we have that R̃D(z) is continuous from Q� to H 1(R). Now, fix f ∈ Q�

and consider a sequence fn ∈ L2(R) ∩ Q� that converges to f in the topology of Q�.
Obviously, R̃Dfn(0) = 0, and by continuity R̃Dfn converges to R̃Df in H 1(R). But this
implies pointwise convergence, then R̃Df (0) = 0.

• Decomposing f as in (5.4) one immediately has

R̃D(z)f = R̃0(z)f0 − ϕz

2
√

z
〈f0, ϕ

z〉Q�,Q. (5.15)

• From (5.15),

R̃D(z)f = R̃D(z)f0.

Now we can extend to Q� the resolvent of any s.a.e. of Ĥ0.

Definition 5.7. Let H be any s.a.e. of Ĥ0. For any z in the resolvent set of H we define the
extended resolvent R̃(z) as follows:

R̃(z)f := R̃D(z)f +
∑

j,k=±

μj,k(z)

2
√

z
ϕz

j

〈
f, ϕz

k

〉
Q�,Q

(5.16)

where the coefficients α and β were defined in (5.4), the function ϕz
j in (2.2) and the parameters

μj,k(z) give the difference between the ordinary resolvent operators R(z) − RD(z) according
to Krein’s formula (see [4], chapter 7, section 84).

As in the previously discussed cases,

• R̃(z)f = (H + z)−1f if f ∈ L2(R);
• it is easily seen that R̃(z) is a continuous linear map from Q� to Q;
• by decomposition (5.4), one has

R̃(z)f := R̃D(z)f0 +
∑

j,k=±

μj,k(z)

2
√

z
ϕz

j

〈
f0, ϕ

z
k − ϕk

〉
Q�,Q

+
α

2
√

z

∑
j=±

μj,+(z)ϕ
z
j +

β

2
√

z

∑
j=±

μj,−(z)ϕz
j . (5.17)

Remark 5.8. Applying Krein’s theory one easily verifies that if H is a hamiltonian operator
defined by the boundary condition (2.5) with b = 0, a = ±1, then the action of its extended
resolvent is represented by the integral kernel

R̃ω,a,c(z; x, y)f := R̃D(z; x, y)f +
1

(a2 + 1)
√

z + ac
[a2θ+(x)θ+(y) e−√

zx e−√
zy

+ ωaθ+(x)θ−(y) e−√
zx e

√
zy + ωaθ−(x)θ+(y) e

√
zx e−√

zy

+ θ−(x)θ−(y) e
√

zx e
√

zy] (5.18)

where the functions ϕz
± were explicitly written.
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Moreover,

• for any f ∈ Q�, we find R̃ω,a,c(z)f ∈ Qωa . To prove it, we just note that for any f ∈ Q�

R̃ω,a,c(z)f (0+) = 1

(a2 + 1)
√

z + ac
[a2〈f, ϕz

+〉Q�,Q + ωa〈f, ϕz
−〉Q�,Q]

R̃ω,a,c(z)f (0−) = 1

(a2 + 1)
√

z + ac
[ωa〈f, ϕz

+〉Q�,Q + 〈f, ϕz
−〉Q�,Q].

(5.19)

Then the correct boundary condition is fulfilled.
• R̃ω,a,c(z) is not invertible, since its kernel coincides with the subspace of Q� generated

by δ(0+) − ωaδ(0−). However, its restriction to Q�
ωa is invertible.

• R̃ω,a,c(z) is bounded as an operator from Q� to Qωa .

5.3. Proof of the well-posedeness

Before proving the well-posedness for the problem (1.2) in the space Q�
ωa , we note that by

using continuity of R̃(m) one immediately has the following lemma:

Lemma 5.9. Let f be a map in C0([0, T ),Qγ ) ∩ C1([0, T ),Q�
ρ), with γ, ρ ∈ C. Then

∂t ei(H+m)t R̃(m)f (t) = iei(H+m)tf (t) + ei(H+m)t R̃(m)∂tf (t), (5.20)

where H is any s.a.e. of Ĥ0 and the derivative of f is to be understood in Q�
ρ .

Then formula (3.9) can be generalized to∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s) = −iR̃(m)|ψ(t)|2ψ(t) + ie−iHt R̃(m)|ψ0|2ψ0

+ mR̃(m)

∫ t

0
ds e−iH(t−s)|ψ(s)|2ψ(s) + 2iR̃(m)

∫ t

0
ds e−iH(t−s)|ψ(s)|2∂sψ(s)

+ iR̃(m)

∫ t

0
ds e−iH(t−s)ψ2(s)∂sψ̄(s). (5.21)

We finally prove global well-posedness in Qωa .

Theorem 5.10 (Existence and uniqueness for global solutions in Qωa). Let H be any self-
adjoint extension of the operator Ĥ0 (see (2.3), (2.4)), defined by the boundary conditions
(2.5) with b = 0, a = ±1. Let its energy domain be denoted by Qωa .

Then for any ψ0 ∈ Qωa equation (1.2) has a unique solution ψ ∈ C([0, +∞),Qωa) ∩
C1([0, +∞),Q�

ωa). Moreover, for the solution the conservation laws of L2-norm and of energy
Bωa(ψ(t)) + λ/2‖ψ(t)‖4

4 hold.

Proof. We define Z := C([0, T ),Qωa) ∩ C1([0, T ),Q�
ωa) and show that the map

� : Zr → Zr ψ �→ e−iH ·ψ0 − iλ
∫ ·

0
ds e−iH(·−s)|ψ(s)|2ψ(s), (5.22)

where Zr is a closed ball of radius r (to be chosen) in Z , is a contraction, for small T.
The proof of the first estimate of interest closely follows the line of the proof of the bounds

in theorem 3.1. Some more care is required in the estimate of the two last terms of (5.21). We
show how to proceed considering the second-last term.

By continuity of R̃(m) : Q�
ωa−1 → Qωa one gets

‖R̃(m)|ψ(t)|2∂tψ(t)‖Qωa
� C‖|ψ(t)|2∂tψ(t)‖Q�

ωa−1
. (5.23)
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Furthermore, approximating ∂tψ(t) by a sequence in L2 and using continuity it is clear that
the multiplication by |ψ(t)|2 is to be understood by duality; therefore,

〈|ψ(t)|2∂tψ(t), ξ 〉Q�

ωa−1 ,Q
ωa−1 = 〈∂tψ(t), |ψ(t)|2ξ 〉Q�

ωa,Qωa
. (5.24)

where ξ is an element of Qωa−1 . Hence,

‖|ψ(t)|2∂tψ(t)‖Q�

ωa−1
� ‖ψ(t)‖2

∞‖∂tψ(t)‖Q�
ωa

� C‖ψ(t)‖2
Qωa

‖∂tψ(t)‖Q�
ωa

. (5.25)

Then

‖R̃(m)|ψ(t)|2∂tψ(t)‖Qωa
� C‖ψ(t)‖2

Qωa
‖∂tψ(t)‖Q�

ωa
. (5.26)

Now we estimate the time derivative of �ψ(t) as a functional on Q�
ωa . First, we define it

in the usual way: given ζ ∈ Qωa

〈�ψ(t), ζ 〉Q�
ωa,Qωa

:= (�ψ(t), ζ ).

Then

〈∂t�ψ(t), ζ 〉Q�
ωa,Qωa

:= ∂t (�ψ(t), ζ ) = iλ(|ψ(t)|2ψ(t), ζ ) + Bωa(ψ(t), ζ )

� C‖ψ(t)‖3
Qωa

‖ζ‖Qωa
(5.27)

where we exploited formula (4.16), with eiHt�ψ(t) replacing eiHtψ(t) in the lhs. The proof
proceeds as in theorem 3.1, so we can conclude

‖�ψ‖Z � C̃‖ψ0‖Qωa
+ CT ‖ψ‖Z . (5.28)

For the proof of the Lipschitz condition we first consider the C([0, T ),Qωa) norm. The
situation is analogous to the one discussed in the proof of the corresponding point in theorem
(3.1). We show how to proceed for estimating the most complicated term:

‖|ψ(t)|2∂tψ(t) − |ξ(t)|2∂t ξ(t)‖Q�

ωa−1
� ‖|ψ(t)|2 − |ξ(t)|2‖Q‖∂tψ(t)‖Q�

ωa

+ ‖ξ(t)‖2
Qωα

‖∂tψ(t) − ∂ξ(t)‖Q�
ωa

and then

‖�ψ − �ξ‖C([0,T ),Qωa)

= |λ|
∥∥∥∥R̃(m)

∫ ·

0
ds e−iH(·−s)

(|ψ(s)|2∂sψ(s) − |ξ(s)|2∂sξ(s)
)∥∥∥∥

C([0,T ),Qωa)

� CT
(‖ψ‖2

Z + ‖ξ‖2
Z
)‖ψ − ξ‖Z . (5.29)

The Lipschitz bound in the norm C1([0, T ),Z) is easily obtained applying formula (5.27).
So we have

‖�ψ − �ξ‖Z � CT
(‖ψ‖2

Z + ‖ξ‖2
Z
)‖ψ − ξ‖Z . (5.30)

Mimicking the proof of theorem 3.1 from formula (3.10) to the end we prove that � is a
contraction when restricted to a suitable ball centered at the origin and a suitable time interval
[0, T /2]. Since both the size of the ball and T depend on ‖ψ0‖Qωa

only, we have the blow-up
alternative.

Conservation of the L2-norm and of the energy, and therefore the global character of the
solution, can be proved following the line used for the analogous issues for solutions in Q. The
only delicate point arises when proving the conservation of the energy. Indeed, the persistence
of a boundary condition in the definition of the energy domain prevents one from directly
extending the result. We sketch the necessary modifications to the proof of theorem 4.3: first,
as in the case of Q, one approximates the initial data ψ0 by a sequence ψ0,n in D(H); second,
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denoted by ψn the solution to (1.2) with initial data ψ0,n, and using that ψ(t) lies in Qωa , one
proves that

‖ψ(t) − ψn(t)‖ � C eCT T ‖ψ0 − ψ0,n‖, ∀ t ∈ [0, T ); (5.31)

for any T in the existence interval of ψ . Therefore, ψn(t) converges to ψ(t) uniformly in
L2(R); third, integrating by parts in Duhamel’s formula (see (5.21)) one gets

‖ψn(t) − ψ(t)‖Qωa
� C

(
‖ψ0,n − ψ0‖Qωa

+ max
t∈[0,T ]

‖ψn(t) − ψ(t)‖
)

+ C

∫ t

0
ds‖∂sψn(s) − ∂sψ(s)‖Q�

ωa
. (5.32)

Finally, using (5.31) and Gronwall’s inequality again one has that ψn(t) converges to ψ(t) in
Qωa . Then, by continuity of energy in Qωa , the proof is complete. �

6. Well-posedness in L2(R)

The theory of well-posedness in L2(R) is analogous to the theory for the free NLS in one
dimension as exposed, for example, in [12]. However, some additional estimates and details
are needed, if the operator H has a non-trivial point spectrum. We stress that this case is
not exceptional: sufficient conditions are given in [5], formula (2.13), for the case in (2.5),
whereas for hamiltonian operators as in (2.6) the pure point spectrum is non-trivial if and only
if either p or q is negative.

It turns out that the presence of a point spectrum prevents us from extending Strichartz’s
estimate to an infinite time interval.

As usual, we call admissible pair any couple of real numbers (q, r) such that

2

q
= 1

2
− 1

r
.

Let us denote by H a s.a. operator satisfying (2.5) or (2.6) and by U(·) the corresponding
unitary group.

Lemma 6.1 (Strichartz estimates). Let (q, r) be an admissible pair. For every ψ0 ∈ L2(R)

the following estimates hold true:

(i) ‖U(·)ψ0‖Lq((0,T ),Lr (R)) � C‖ψ0‖; (6.1)

(ii) given any t0 ∈ (0, T ), (γ, ρ) an admissible pair and f ∈ Lγ ′
((0, T ), Lρ ′

(R)), the function

�(t) =
∫ t

t0

U(t − s)f (s) ds

belongs to Lq((0, T ), Lr(R)) ∩ C((0, T ), L2(R)). Moreover,

‖�‖Lq((0,T ),Lr (R)) � C‖f ‖Lγ ′
((0,T ),Lρ′

(R)). (6.2)

Proof. Theorem 3.1 in [5] (formulas (3.5) and (3.6)) gives an explicit characterization of
the propagator of generalized point interactions, separating the contributions of absolutely
continuous and pure point spectrum (their singular spectrum is empty). It follows from the
explicit form of the decomposition U(t) = Uac(t) + Upp(t) that the following dispersive
estimate holds:

‖Uac(t)ψ0‖L∞(R) � C|t |− 1
2 ‖ψ0‖L1(R).
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So, the standard proof of Strichartz estimates (see for example theorem 2.3.3 in [12]) applies
without difficulties taking into account the regularizing properties of the a.c. part of the
resolvent of H; therefore, Strichartz estimates (6.1) and (6.2) are proven with Uac(t) in the
place of U(t). Let us consider the contribution of Upp(t). We have

Upp(t)ψ0 =
#{Ej }∑
j=1

e−iEj t (φj , ψ0)φj (6.3)

where {Ej } is the set of the eigenvalues of H, #{Ej } denotes its cardinality and φj ’s are the
corresponding eigenvectors. Note that the latter belong to every space Lp(R). This yields the
following estimate:

‖Uppψ0‖Lq((0,T ),Lr (R)) �

⎛
⎝#{Ej }∑

j=1

‖φj‖‖φj‖r

⎞
⎠ T

1
q ‖ψ0‖ (6.4)

and (6.1) is proven.
Now, for the proof of (ii), let us write �(t) = �ac(t) + �pp(t) with obvious meaning of

the notation. We get

‖�pp‖Lq((0,T ),Lr (R)) �

⎛
⎝#{Ej }∑

j=1

‖φj‖ρ‖φj‖r

⎞
⎠ T

1
γ

+ 1
q ‖f ‖Lγ ′

((0,T ),Lρ′
(R)). (6.5)

Finally, a direct estimate shows that �pp ∈ C((0, T ), L2(R)). This concludes the proof of the
lemma. �

Now we come to the well-posedness of dynamics in L2(R).

Theorem 6.2. For any ψ0 ∈ L2(R) there exists a unique solution ψ ∈ C(R, L2(R)) ∩
L8

loc(R, L4(R)) of problem (1.2). Moreover, L2-norm is conserved.

Proof. The proof strictly follows the proof of theorem 4.6.1. in [12], for the particular case
α = 2, p = 4, q = 8. The proof of the conservation law only (step 5 in Cazenave’s proof)
requires a modification: the regularizing operator Jε must be defined by

Jε := (I + εH)−1. (6.6)

Note that for ε sufficiently small Jε is well defined. We need to prove the following facts:

(1) As ε goes to zero, Jε → I strongly in Lp(R), for any 1 < p < ∞.
(2) As ε goes to zero, Jε → I strongly in L

q

loc(R, Lp(R)), where (q, p) is an admissible pair.
(3) Jε is bounded as an operator in Lp, uniformly in ε.

In order to prove (1), (2) and (3), it is convenient to use Krein’s formula (see [4], chapter
7, section 84). Given f ∈ Lp(R) one obtains

Jεf := Iεf + ε−1
∑

j,k=±

pj,k(ε
−1)

2
√

ε−1
ϕε−1

j

〈
ϕε−1

k , f
〉
Lp′

(R),Lp(R)
(6.7)

where Iε denotes the operator
(
I − ε∂2

x

)−1
. From formula (12) in the cited section of [4] it

appears that pj,k(ε
−1) is bounded for ε → 0. Furthermore, from proposition 1.5.2 in [12] it is

clear that 1, 2 and 3 hold for Iε. It remains to show that ε−1/2ϕε−1

j

〈
f, ϕε−1

k

〉
Lp′

(R),Lp(R)
vanishes

in Lp(R). Indeed, it is clear that Iεχ+f → f ; therefore,

ε−1/2ϕε−1

j

〈
f, ϕε−1

k

〉
Lp′

(R),Lp(R)
= χ−Iεχ+f → 0

in Lp(R). This proves 1. Conditions 2 and 3 can be proven in the same way. The rest of
the proof follows exactly the line of [12], except that H 1(R) has to be replaced by the energy
space X associated with the operator H. �
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7. Extensions and perspectives

7.1. Finitely many-point interactions

Our results immediately extend to the case of finitely many-(say n) point interactions. Imagine
that the interactions are located at y1 < · · · < yn, which we collectively denote by the
n-dimensional vector Y. The linear part of the dynamics is then generated by a s.a. extension
H of the free Laplacian defined on C∞

0

(
R

∖( ∪n
j=1 {yj }

))
.

By the von Neumann’s theory for s.a. extensions, any such H is characterized by
linear conditions on the quantities ψ(yj ), ψ

′(yj ) that generalize and mix (2.5), (2.6). A
generalization of proposition (2.1) holds, but we do not give it in full generality. We just point
out that all form domains are included in

QY = H 1(−∞, y1) ⊕ H 1(yn, +∞) ⊕n−1
i=1 H 1(yi, yi+1)

and include

QY
0 = {ψ ∈ QY ,ψ(yj ) = 0, j = 1, . . . , n}.

Similarly, all duals of form domains include

Q
Y,�
0 =

{
f ∈ H−1(R), s.t.

∫
R

eikyj
f̂ (k)

k2 + 1
dk = 0

}
and are included in

QY,� = Q�
0 ⊕n

j=1 Span(δ(yj±)).

Estimates in section 4 still hold and section 3 (including well-posedness in the operator domain,
conservation laws, global character of the solutions) can be rewritten without modification.

Section 4 is valid for this case too, except that proofs must be modified, since the
expressions involving the boundary conditions are much more complicated.

The procedure and results in section 5 can be extended to this general case too, but writing
the resolvents in all details can be quite cumbersome.

Finally, proving the global well-posedness of the problem in L2(R) is not immediate.
The main hindrance consists in proving Strichartz’s estimates. More specifically, due to the
possible presence of bound states with positive energy (see e.g. [6]), it is not immediate to
treat separately the discrete and the continuous part of the spectrum.

7.2. More general nonlinearity power

All results on local well-posedness can be immediately extended to a problem analogous to
(1.2), but with the nonlinear term replaced by λ|ψ |pψ . Global well-posedness holds in the
energy domain if p < 4 or λ > 0. As in the standard NLS, for attractive nonlinearity (λ < 0)
and p � 4, blow-up phenomena can occur: it can be proven by ordinary methods ([12]).

Nevertheless, it would be interesting to understand what happens when the blow-up
occurs by concentration of the wave packet at the point where the interaction is located. If the
interaction is very singular (e.g. δ′), the blow-up profile is expected to be non-standard.

7.3. Nonlinear boundary condition

A more general problem can be considered defining nonlinear boundary conditions, i.e.
considering the coefficients a, b, c, d, ω in (2.5) and p, q in (2.6) as functions of the solution
ψ(t), following the line of [2, 3].
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From the point of view of the modeling, such a system would describe nonlinear
phenomena that originate outside the system and are localized in the defect. Concerning
the mathematical investigation, it is clear that the methods would be considerably different,
due to the fact that the linear part in general would not reduce to the linear point interaction
(e.g. in the case of [3] the linear part coincides with the free Laplacian). We expect that the
local existence result and the conservation laws still hold true, but blow-up phenomena could
possibly arise, if the nonlinear dependence of the coefficients is sufficiently strong.
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